
Bringing Operational Knowledge

to Secure Development

Steve Lipner

SAFECode and Microsoft Corporation

September 2011

About SAFECode

The Software Assurance Forum for Excellence in

Code (SAFECode) is a global, industry-led effort

to identify and promote best practices for

developing and delivering more secure and

reliable software, hardware and services

Overview

• Secure development practices

• Vulnerability response and root cause

• Vulnerability response, root cause and security process

• Summary

Secure Development

Practices

Fundamental Practices for Secure

Software Development – Second Edition

• New in 2nd Edition:

- Verification methods and tools were developed for each listed

practice to help managers confirm whether a practice was

applied.

- Common Weakness Enumeration (CWE) references

were added to each practice to provide a more

detailed illustration of the security issues these

practices aim to resolve.

Secure Development

Practices

Section Practice

Secure Design Principles Threat Modeling

Use Least Privilege

Implement Sandboxing

Secure Coding Practices Minimize Use of Unsafe String and Buffer Functions

Validate Input and Output to Mitigate Common Vulnerabilities

Use Robust Integer Operations for Dynamic Memory Allocations

and Array Offsets

Use Anti-Cross Site Scripting (XSS) Libraries

Use Canonical Data Formats

Avoid String Concatenation for Dynamic SQL Statements

Eliminate Weak Cryptography

Use Logging and Tracing

Testing Recommendations Determine Attack Surface

Use Appropriate Testing Tools

Perform Fuzz / Robustness Testing

Perform Penetration Testing

Technology Recommendations Use a Current Compiler Toolset

Use Static Analysis Tools

Vulnerability Response

and Root Cause

• All development organizations must practice vulnerability
response

• No perfect software

• Active communities of vulnerability finders

• Naïve organization fixes vulnerabilities as reported

• Again and again and again

• Mature organization integrates root cause analysis into
response

• Fixes ―internal finds‖ with external reports

• Avoids repeated reports of same vulnerability

• Root cause analysis increases ―time to fix‖ – hence need to
cooperate with vulnerability finders

Vulnerability Response,

Root Cause, and Secure

Development Practices

• Vulnerability response and root cause analysis advise secure
development practices

• What practices are important?

• What practices are ineffective?

• What practices are missing?

• SAFECode Secure Development Practices associated with CWE
vulnerability classes

• CWE can be effective for characterizing vulnerabilities,
development tools, and mitigations

• Identifying correct CWE of vulnerabilities is important!

• If a CWE is prevalent ―in the wild‖ and no tools, processes, or
mitigations address it – a clear area for process improvement

Summary

• Operational experience and root cause analysis are key to

effective development security

• Security response

• Secure development process

• CWE is a useful tool for process improvement

• "Top N‖ lists are a good check on process, but a sound process

covers broad classes of vulnerabilities

• Process improvement is important! No perfect secure

development process (or secure products) in the real world

www.safecode.org

Twitter: @safecodeforum

Blog: http://blog.safecode.org

Steve Lipner

Senior Director of Security Engineering Strategy,

Trustworthy Computing Security, Microsoft Corporation

SAFECode Board Chair

(425) 705-5082

slipner@microsoft.com

STOP

About SAFECode

SAFECode Vision

Trusted and reliable information

and communications systems

powered by high-quality, secure

software development practices

About SAFECode

SAFECode Mission

As a center of excellence for vendor software assurance practices,

SAFECode unites subject matter experts with unparalleled experience

in managing complex global processes for software sourcing,

development and delivery to:

• Encourage broad industry adoption of proven software security,

integrity and authenticity practices

• Drive clarity into vendor software assurance practices to

empower customers and other key stakeholders to better manage

risk

• Foster a trusted exchange of insights that advance software

assurance practices

Outreach Initiatives

SAFECode Outreach

SAFECode and its work is well known by government stakeholders

in both the EU and US.

•SAFECode facilitates direct member interaction with influential

officials in Brussels and Washington.

•Our work is frequently cited by homeland security officials,

policymakers and international standards organizations as

fundamental to their thinking on software security issues.

SAFECode is also an active contributor to the technical community

and our representatives and members are frequent speakers and

participants in key industry events and initiatives throughout the

US and Europe.

Outreach Initiatives

How SAFECode Works

SAFECode-
Recommended

Practices

Practices

Practices

Practices

Practices

Practices

Practices

Practices

Common Practice

Identification, Analysis

and Discussion

Trusted Sharing

Environment

Strengthened by

NDA

Working

Group

Process

SAFECode’s View of

Software Assurance

Software Assurance: Confidence that software, hardware and

services are free from intentional and unintentional vulnerabilities

and that the software functions as intended.

In practice, software vendors

take action in three key,

overlapping areas to achieve

software assurance—

security, authenticity and integrity. ASSURANCE

Security

Authenticity Integrity

Software Assurance:

Security

Security: Security threats to the software are anticipated and addressed

during the software’s design, development and testing through secure

engineering practices. This requires a focus on code quality and functional

requirements to reduce unintentional vulnerabilities in the code.

ASSURANCE

Security

Authenticity Integrity

Software Assurance:

Integrity

Integrity: Security threats to the software are addressed in the processes

used to source software components, create software components, and

deliver software to customers. These processes contain controls to enhance

confidence that the software was not modified without the consent of the

supplier.

ASSURANCE

Security

Authenticity Integrity

Software Assurance:

Authenticity

Authenticity: The software is not counterfeit and the software supplier

provides customers ways to differentiate genuine from counterfeit software.

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity Integrity

Our Work to Date

Secure Software

Development

Software Integrity

Controls

Training

Software Integrity

Framework

Secure Development

Practices

Fundamental Practices for Secure

Software Development – Second Edition

• Focus: Provide a foundational set of secure development

practices based on an analysis of the real-world actions of

SAFECode members

• Key Objectives: Help others initiate or improve

their own software security programs and

encourage the industry-wide adoption of

fundamental secure development methods.

Security Engineering

Training

Security Engineering Training: A Framework for

Corporate Training Programs on the Principles of

Secure Software Development

• Focus: Provide a framework for the development of

corporate training programs on the principles of secure

software development.

• Key Objectives: Assist others in the industry

in developing their own security engineering

training initiatives by offering insight into

the common elements of training programs in

place today within SAFECode member companies.

Security Engineering

Training

Security Engineering Training: A Framework for

Corporate Training Programs on the Principles of

Secure Software Development

• Key Areas Covered:
- Creating a framework for internal security engineering training

- Defining training targets and learning objectives

- Developing or obtaining training content

- Determining how to implement the training program

Software Supply Chain

Integrity Framework

The Software Supply Chain Integrity Framework: Defining

Risks and Responsibilities for Securing Software in the

Global Supply Chain

• Focus: Provide the first industry-driven framework for analyzing

and describing the efforts of software suppliers to mitigate the

potential that software could be intentionally compromised during

its sourcing, development or distribution.

• Key Objectives: Create a foundation for evaluating

and describing software supply chain risks to enable

the identification and analysis of mitigating controls

and practices.

Supplier
Sourcing

• Procurement

Product Development
and Testing

• Environment

• Personnel

• Software Development

Product
Delivery

• Distribution

• Sustainment

Software Supply Chain

Integrity Framework

ASSURANCE

Security

Authenticity Integrity

Every software supplier has an

opportunity and a responsibility to apply

software assurance practices to all three

lifecycle processes they control at their

link in the software supply chain

Software Supply Chain

Integrity Controls

Software Integrity Controls: An Assurance-Based Approach to

Minimizing Risks in the Software Supply Chain

• Focus: Provide actionable recommendations for minimizing the risk

of vulnerabilities being inserted into a software product during its

sourcing, development and distribution.

• Key Objectives: Help others initiate or improve

their software supply chain security programs and

encourage broad industry adoption of software

integrity controls.

Processes Controls

Software Sourcing Vendor Contractual Integrity

Controls

•Defined expectations

•Ownership and

responsibilities

•Vulnerability response

•Security training

Vendor Technical Integrity

Controls for Suppliers

•Secure transfer

•Sharing of system and

network resources

•Malware scanning

•Secure storage

•Code exchange

Software

Development &

Testing

Technical Controls •People security

•Physical security

•Network security

•Code repository security

•Build environment

security

Security Testing Controls •Peer review •Testing for secure code

Software Delivery &

Sustainment

Publishing & Dissemination

Controls

•Malware scanning

•Code signing

•Delivery

•Transfer

Authenticity Controls •Cryptographic hashed or

digitally signed

components

•Notification technology

•Authentic verification

during program execution

Product Deployment and

Sustainment Controls

•Patching

•Secure configurations

•Custom code extension

Software Supply Chain

Integrity Controls

